2 6 M ar 1 99 9 A Model for Persistent Levy Motion

نویسندگان

  • A. V. Chechkin
  • V. Yu
چکیده

We propose the model, which allows us to approximate fractional Levy noise and fractional Levy motion. Our model is based (i) on the Gnedenko limit theorem for an attraction basin of stable probability law, and (ii) on regarding fractional noise as the result of fractional integration/differentiation of a white Levy noise. We investigate self-affine properties of the approximation and conclude that it is suitable for modeling persistent Levy motion with the Levy index between 1 and 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c on d - m at / 9 91 14 28 v 1 2 6 N ov 1 99 9 The Values Distribution in a Competing Shares Financial Market Model

We present our competing shares financial market model and describe it's behaviour by numerical simulation. We show that in the critical region the distribution avalanches of the market value as defined in this model has a power-law distribution with exponent around 2.3. In this region the price returns distribution is truncated Levy stable.

متن کامل

ar X iv : m at h / 99 07 16 9 v 1 [ m at h . Q A ] 2 6 Ju l 1 99 9 Integrable deformations of Hamiltonian systems and q - symmetries 1

The complete integrability of the hyperbolic Gaudin Hamiltonian and other related integrable systems is shown to be easily derived by taking into account their sl(2, R) coalgebra symmetry. By using the properties induced by such a coalgebra structure, it can be proven that the introduction of any quantum deformation of the sl(2, R) algebra will provide an integrable deformation for such systems...

متن کامل

ar X iv : c on d - m at / 9 60 40 14 v 1 2 A pr 1 99 6 Quantum Hall Effect and Chaotic Motion in Phase Space

We discuss the relation between the Quantum Hall behaviour of charged carriers and their chaotic motion in phase space. It is shown that the quantum Hall diagram is comparable with the stepped diagram in phase space of a chaotic motion.

متن کامل

ha o - dy n / 99 03 03 2 v 1 2 3 M ar 1 99 9 On the classical dynamics of billiards on the sphere

We study the classical motion in bidimensional polygonal billiards on the sphere. In particular we investigate the dynamics in tiling and generic rational and irrational equilateral triangles. Unlike the plane or the negative curvature cases we obtain a complex but regular dynamics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999